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AN INTERIOR TRUST REGION APPROACH FOR NONLINEAR
MINIMIZATION SUBJECT TO BOUNDS*

THOMAS F. COLEMAN' AND YUYING LIt

Abstract. We propose a new trust region approach for minimizing a nonlinear function subject
to simple bounds. Unlike most existing methods, our proposed method does not require that a
quadratic programming subproblem, with inequality constraints, be solved in each iteration. Instead,
a solution to a trust region subproblem is defined by minimizing a quadratic function subject only to
an ellipsoidal constraint. The iterates generated are strictly feasible. Our proposed method reduces
to a standard trust region approach for the unconstrained problem when there are no upper or
lower bounds on the variables. Global and local quadratic convergence is established. Preliminary
numerical experiments are reported indicating the practical viability of this approach.
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1. Introduction. We consider the problem of computing a local minimizer of a
smooth nonlinear function subject to bounds on the variables:

(1.1) nrlgl flz), l<z<u,

where [ € {RU {—o0}}", u € {RU{00}}", I < u, and f: R® — R!. We denote the
feasible set F & {z: 1 <z < u} and the strict interior int(F) Lef {z:l<z<u}.

We propose a strictly feasible trust region approach for problem (1.1). Global
convergence to a second-order point is established under reasonable assumptions, and
a local quadratic convergence rate is also obtained.

Minimization problems with upper and/or lower bounds on some of the variables
form an important and common class of problems. There are many algorithms for
this type of optimization problem (e.g., {1, 4, 5, 7-9, 11, 13-15, 19-21, 25]), some of
which are restricted to quadratic (in some cases convex quadratic) objective functions
and some of which are more general. Almost all of the existing methods for problem
(1.1) are “active set” methods.

Trust region methods form a respected class of algorithms for solving uncon-
strained minimization problems. Their high regard is partially due to their strong
convergence properties, partially due to their naturalness, and partially due to the re-
cent development of reliable, efficient software. The idea behind a trust region method
for minzeg~ f(z) is very simple. The increment s; = Tr+1 — Tk Is an approximate
solution to a quadratic subproblem with a bound on the step:

. e 1 _
(1.2) min {wk(s) def aFs+ §sTBks : | Drs|| £ Ak} .
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Here gx ey f(zx), Bx is a symmetric approximation to the Hessian matrix V2f{(zx),
Dy is a scaling matrix, and Ay is a positive scalar representing the trust region size.
Throughout our presentation, || - || denotes the 2-norm.

A general scheme for the unconstrained minimization of f(z), based on subprob-
lem (1.2), is described in Figure 1.1. An iteration with p{ > p is said to be successful.
Otherwise, the iteration is unsuccessful. The aim of trust region size updating is to
force p{ > p and hence ensure sufficient reduction of the objective function.

Algorithm 0. Unconstrained trust region method
Let0<pu<n<l

For k=0,1,...

Compute f(zx) and the model ¥x.

Define an approximate solution s to subproblem (1.2).

Compute pf = (f(zk + s) — F(ar))/x(sk)-
If p,{ > p then set Tg41 = Tk + Sk- Otherwise set Tk4+1 = Tk-
Update the scaling matrix Dy and Ag.

o

Updating trust region size

Let 0<m <1< 7
1. If p{ < p then set Agq1 € (0,71 Ak)-
2. If p{ € (p,m) then set Agy1 € (118K, Dk
3. If p,’: > n then set Ag41 € [Ak, 12Ak]-

FiG. 1.1. Trust region method for unconstrained minimization.

Computing a solution to the trust region problem (1.2) in a reliable and efficient
way is a nontrivial task. There are several papers on this topic, e.g., 2, 3,7, 8,12,
18, 22-24].

Trust region methods have also been developed for the solution of linearly con-
strained optimization problems (e.g., {9] and [10]). A quadratic trust region subprob-
lem with linear inequalities is usually approximately solved to obtain an improved
point. An iterative procedure must be used to solve the subproblem. For example,
Fletcher [10] proposes an algorithm for the linearly constrained optimization problem

min{f(z) : ETz < d}

in which the subproblem is of the form

(1.3) s%!in& {g{s + -lz—sTBks : ET{zx +5) < d, || Drsllc -Ak} .

As pointed out in [17], convergence theory for trust region methods based on
quadratic programming subproblems such as (1.3) usually requires that the computed
trial step be a global solution to the subproblem. However, the subproblem is typically
solved by methods which guarantee local optimality at best. Therefore, there is a
mismatch between theory and practice for trust region methods based on quadratic
programming subproblems (with linear inequalities).

In this paper, we propose a trust region approach for (1.1) that does not require
the solution of a general quadratic programming subproblem at each iteration. Our
proposal is related to the line search based reflection methods proposed by Coleman
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and Li [6]—scaling strategies and the requirement of strict feasibility are common to
both approaches. The primary difference is that in 6] a line search based method is
proposed, along with a “reflection” strategy to guarantee sufficient descent, whezeas
here we propose a pure trust region method.

The proposed approach is developed by forming a quadratic model with an appro-
priate quadratic function and scaling matrix: there is no need to handle the constraints
explicitly. It is then possible to obtain an approximate trust region solution which
can guarantee second-order convergence by solving a trust region subproblem with a
simple 2-norm constraint and then satisfying the strict feasibility requirement by fur-
ther restricting the step, if necessary. Our proposed approach reduces to a standard

trust region algorithm for unconstrained minimization when | = —o0o and u = +o0.
Moreover, all the convergence proofs essentially reduce to established proofs for the
unconstrained trust region approach when | = —00 and u = +o0.

We motivate the method in §2 and establish convergence in §3. In §4, preliminary
numerical results for small dense problems are presented. A more comprehensive
computational investigation of the method, particularly for large problems, will be
presented in a subsequent paper. :

As a general rule for notation, unless indicated otherwise, the subscript % or j
denotes a component of a vector. The subscript k denotes an index for an {infinite)
sequence. For any function F, we use the notation Fj to denote F(z) and, if F:
R™ — R, Fy; to denote Fi(zx). When clear from the context, we omit the argument,
that is, we use the notation F for F(z) or F; for F;(z), for instance.

2. Trust region method for bound-constrained problems. In this section,
we propose a trust region method for bound-constrained problems. Our method
involves choosing a scaling matrix Dy and a quadratic model ¥ (s) (we reserve Dy, to
denote the “classical” scaling as in (1.2)). We motivate our choice of scaling matrix
by examining the optimality conditions for (1.1).

Let g(z) Ly f(z). We first define a vector function v(z) : R* — R" as follows.

DEFINITION 2.1. The vector v(z) € R is defined as follows: for each component
1<i<mn, _

(i) if g < 0 and u; < oo then v; & z; — Uus;
(ii) if g; > 0 and l; > —oo then v; o T; —I;;
(iii) if g; < 0 and u; = oo then v; -] -1;

(iv) ifg; > 0 and l; = —oco then v; def 1.

Following Matlab notation, for any s € ®", diag(s) denotes an n-by-n diagonal
matrix with the vector s defining the diagonal entries in their natural order. Moreover,
for any nonsingular matrix 4 € ®**" and any ! > 0, A~ denotes the inverse of A,
where A! is the Ith power of A. Using this notation, we define

(2.1) D(z) ¥ diag(ju(z)|"?),

i.e., D2 is a diagonal matrix with the ith diagonal component equal to {v;|.
Optimality conditions for problem (1.1) are well established. Assuming feasibility

def .- e .
and g. = g(z.), first-order necessary conditions for z., to be a local minimizer are

Gx; = 0 if L < Ty < Uy,
(2.2) first-order:{ g.; <0 if z,; = u;,
g«; 20 ifz,;, =1,
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Equivalently, D(z.)~2g, = 0. Second-order conditions involve the Hessian matrix
of f. Let Free, denote the set of indices corresponding to “free” variables at point
Tyt

Free, = {i:l; < Tu; < ui}.

Second-order necessary conditions can be written:! if a feasible point z. is a local min-

imizer of (1.1) then D(z.) 2g. = 0 and HFree- > 0, where HI - is the submatrix

of H, % ©2f(z,) corresponding to the index set Free..

These conditions are necessary but not sufficient. Sufficiency conditions that are
achievable in practice often require a nondegeneracy assumption. This is the case
here.

DEFINITION 2.2. A point z € F is nondegenerate if, for each indez 1,

(2.3) . gi = 0 = |; <z; <u;.

A problem (1.1) is nondegenerate if (2.3) holds for every = € F.

Using this definition we can state second-order sufficiency conditions: if a nonde-
generate feasible point z. satisfies (2.2) and HFee- > 0, then z, is a local minimizer
of (1.1).

Similar to the view expressed in [7], we consider the following diagonal system of
nonlinear equations:

(2.4) D(z) 2g(z) = 0.

It is easy to see that system (2.4) is an equivalent statement of the first-order necessary
conditions. System {2.4) is continuous but not everywhere differentiable. Nondiffer-
entiability occurs when v; = 0; we avoid such points by restricting zx € int(F).
Discontinuity of v; may also occur when g; = 0; however, D(z)~?g(z) is continuous
at such points. Moreover, Coleman and Li {7] show that it is possible to generate
a second-order Newton process for (2.4). The proof in {7] is based on the following
observations.
Assume that zi € int(F). A Newton step for (2.4) satisfies

(2.5) (D7 ?V?(zx) + diag(gr) J¥)dk = —Di *gx,

where J?(x) € R"*™ is the Jacobian matrix of lv(z)| whenever |{v{z)| is differentiable.
Since |vx| > 0 by strict feasibility, following Definition 2.1, the only nondifferentiable

points of possible concern occur when gi; = 0 for some index i. If g; = 0, we define

the ith row J? of J¥ to be zero, i.e., J7 def 3. Nondifferentiability of this type is not

a cause for concern because, for such a component, the value of v; is not significant—
local quadratic convergence can be achieved with nonlinear systems of this type {7].
It is clear that J?(z) is a diagonal matrix. Moreover, if all the components of [ and u
are finite, J¥ = diag(sgn(g)). If a variable z; has a finite lower bound and an infinite
upper bound (or vice versa) and g; =0, then JJ; = 0.

Let B(z) be an approximation to V2f(z). Based on the Newton step (2.5) for
system (2.4), we define our quadratic model in the same way as in {7):

1
{2:6) Yr(s) def ngs + §sTMks,

1 Notation: if a matrix A is a symmetric matrix then we write A > 0 to mean that A is positive
definite; A > 0 means that A is positive semidefinite.
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where
(2.7) M € By + Cy,
(2.8) Cr € Dydiag(gi)Jg Dy
It is clear that Cy is a positive semidefinite diagonal matrix.
Define
o < D gi = diag(lol)gx,

My € D7 MD;? = diag(jue|¥)Brdiag(|u|?) + diag(gx) 7,

~ o def ara 1 poa
Yr(8) = g{s + ESTMks.

The following lemma can be easily proved.

LEMMA 2.3. Assume that z, € F and B(z,) = H,. Then

(a) 9 = 0 if and only if (2.2) is satisfied; v

(b) M. is positive definite and §. = 0 if and only if the second-order sufficiency
conditions are satisfied at x,;

(c) M, is positive semidefinite and g, = 0 if and only if the second-order necessary
conditions are satisfied.

Lemma 2.3 implies that zj is a local minimizer of (1.1) if and only if § = 0 is a
solution to
(29) min {Pi(3) : [13]l < Ax}.

SER™

Therefore, a solution of the subproblem (2.9) should yield a reasonable (trial) step
when zx is not a local minimizer. Let s = D;1-§- Subproblem (2.9) is equivalent to
the following problem in the original variable space:

(2.10) min {Pi(s) : || Desll < Ax}.

Moreover, in the neighborhood of a local minimizer, the Newton step defined by (2.5)
for (2.4) is a solution to the trust region subproblem (2.10) if the trust region size Ay
is sufficiently large.

The purpose of the scaling matrix Dy in (2.10) is distinctively different from the
scaling matrix Dy used in unconstrained trust region methods, .g., (1.2). The scaling
matrix D is related to the distance to the boundary of the feasible region. Its purpose
is to prevent a step directly toward a boundary point. In contrast, the scaling matrix
Dy, used in unconstrained trust region methods, is usually employed for numerical
reasons—the scaling matrix D;, improves the conditioning of the problem.

If a bound-constrained problem (1.1) is badly scaled, the subproblem (2.10) can
be replaced with

min {¢x(s) : || DxDrsl < A},

sER™
where Dy, is chosen to improve the scaling and is a diagonal matrix with the property
that {D; '} is bounded and {Ds} is uniformly bounded. However, to emphasize the
role of the scaling matrix Dy, we assume that Dy = I.

Next we illustrate that it is possible to develop trust region methods for the
bound-constrained problem (1.1) based on (2.10). First we introduce some notation
and assumptions.
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In the subsequent presentation, py denotes a global solution to (2.10). Assume
that di € R"™. The scalar o denotes the stepsize along di to the boundary:

L — Te: Ui — Ths
{2.11) ok qgmin{max{ z Ik’,uz xk‘}: lgiSn},
di; dii
and l—gfh = ik 4f 4 o0 if dy; = 0. (This is reasonable since l; < zx; < u; always
holds.) If problem (1.1) is unconstrained, i.e., I = —cc and u = oo, we also define

or = +o00. We use ¥1]dx] to denote the minimum value of ¢(s) along the direction

dj;. within the feasible trust region, i.e.,

(2.12) 5 [dk] ef Yr(Trdk) 4o min{yg(7di) : |7 Drdi|| < Ak, zk + Tdi € F}.

Since we always require zx € int(F), a possible step-back may be necessary to
stay strictly feasible. Assume 6; € (0,1). We require that?

(2.13) 6r € {6,,1), 6x—1= O(||ldk]l), and O =1if zx + Trdy € int(F).

We use a}[dx] to denote the step obtained from di with a possible step-back. The
exact definition of aj[dk] is

(2.14) arlde] & i dy.

We now state a few assumptions.
(AS.1) Given an initial point 2o € F, it is assumed that L is compact, where
L is the level set, i.e., L= {z: = € F and f(z) < f(z0)}-

(AS.2) There exists a positive scalar xp such that ||Bk|| < x5 for all k.
(AS.3) There exists a positive scalar xg such that for z € £, ||g(z)llec < Xs-

Assumption (AS.2) is also required in the convergence analysis of trust region
methods for unconstrained problems. Assumption (AS.1) is needed for the bound-
edness of the scaling matrices {D; '}. Condition (AS.3) is weak. It is satisfied, for
example, if the gradient g(z) is continuous on £. Assumptions (AS.1) and (AS.2)
imply that there exist positive scalars xp, xum such that

ID7M < xps 1Ml < X

Note that {M}} is unbounded in general.

Next we present two trust region algorithms for the bound-constrained problem
(1.1). The first, called the double-trust region method, is theoretically interesting.
It illustrates that bound constraints can be handled by adjusting the trust region
size for a 2-norm trust region subproblem with appropriate scaling matrices and the
quadratic model. The second method, which we describe in §2.2, represents a more
efficient approach.

2.1. The double-trust region method. Our objective is to develop a trust
region method for (1.1) based on the trust region subproblem (2.10): a solution pi to
the trust region subproblem (2.10) is obtained and then truncated, i.e., sx = aj[p],
to ensure strict feasibility.

The essential idea behind trust region methods is to adjust the trust region size
to ensure a sufficient decrease of the objective function. Consider the unconstrained

2 The notation 7x = O(px) means that there exists a constant x > 0 such that |nx| < xlpx|-
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setting: the trust region size is updated to ensure that the reduction of the nonlinear
function f(z) is at least a fraction of the reduction of the quadratic model within the
trust region. Specifically, the updating of the trust region size forces the condition

of = fzk + sk) — flzk)
k Yr(sk)

for some constant u > 0. (We use the superscript f to emphasize the dependence on
f(z).) Since our quadratic model ¥(s) is deﬁned to include the constraint informa-
tion, a natural extension of the deﬁmtlon of pk to a bound-constrained problem (1.1)
is given by

>p

o] 4 def f(Tk + 8K) — flzi) + S{Cksk
Vi (sk)

Similar to unconstrained trust region methods, p£ measures the agreement between
the nonlinear function f(z) and its quadratic approximation.

To obtain first-order convergence of unconstrained trust region methods, a suf-
ficient reduction of the quadratic model v, (s) within the trust region is guaranteed
if

(215) 9u(sk) < Bmin{e(s) : s = —7D ' DT g, | Disll < Ax}, || Disll < BoAs
for some constants 3, 5o > 0. In our notation, (2.15) is equivalent to

(2.16) Yr(sk) < BYi[-Di' DT gk] | Dicskll < BoAk.

For problem (1.1), as we will prove in Lemma 3.1 in §3, if s; satisfies

(2.17) Vk(sk) < BYx[—Dy%gx], || Dskll < Bolk, Tk + sk € int(F),

the trust region model is sufficiently reduced to yield first-order convergence for our
approach.

Unfortunately, a truncated step along an exact solution px of (2.10) may not
sufficiently reduce the quadratic model v (s) because of the effect of truncation, i.e.,
(2.17) is not guaranteed when sx = of[px] and pi solves (2.10). However, for any
trust region subproblem with a nonzero gradient, the trust region solution approaches
the gradient direction if the trust region s1ze is reduced to zero. Since a step along
the scaled steepest descent direction —-Dk g does produce a sufficient reduction of
Yx(s), adjustment of the trust region size Ay can be used to ultimately guarantee
a sufficient decrease. In particular, trust region size reduction can be used to force
(2.17), i.e.,

p et Yi(sk)
Yr[—Di?gx)

Hence, we can adjust the trust region size so that both the quadratic model function
¥x(s) and the nonlinear function f(z) are sufficiently reduced. This gives us the
trust region algorithm, Algorithm 1, described in Figure 2.1. We call it the double-
trust region method because the trust region size is adjusted for both nonlinearity and
feasibility. For this method, an iteration is successful if both pk > p and pf > S.
Otherwise, an iteration is unsuccessful.

> 8.
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Algorithm 1. The double-trust region method
Let 0 < p, 8 < 71 < 1, 2o € int(F).
For k=0,1,...
1. Compute f(zk), 9k, B and Ck; define the quadratic model ¥x(s) =gFs+
T(Bk + Cg)s.
2. Compute Pk, a solution to (2.10).
3. Compute

sk = ag[pxl;
o = Yr(sk)
Yil-Di %ok’
5 flzk+sk) — flzx) + 355 Crsi
g Yr(sk) )

p

4. If p,c > p and p§ > 3 then set Tx41 = Tk + sk Otherwise set k41 = Zk.
5. Update the scaling matrix Dy and Ay as specified.

Updating Aj for the double-trust region method
Let0<m < 1< 7.
1. If pk < por p§ < 3 then set Agiy € (0, M1Ak]-
2. If pk € (u,7) then set Axi € [110k, Ak
3. If pi > n then
if p§ > n set Ag41 € [Ak, 72Dk,
if < pi < 7 set Ak41 € [’)‘1Ak,Ak],
if p§ < B set Ag41 € (0,11 Ak

FiG. 2.1. Double-trust region method for minimization subject to bounds.

In §3, we will prove that the double-trust region method has reasonable conver-
gence properties under the nondegeneracy assumption. Although the nondegeneracy
assumption is impractical, we believe that the double-trust region method in Figure
2.1 is of theoretical interest. It indicates that if we allow the trust region size to be
adjusted according to both accuracy of the quadratic approximation to the nonlin-
ear objective function and how well the bound restriction is handled, we can have a
trust method for the bound-constrained problem (1.1) based on a 2-norm trust region
subproblem. In other words, bound” constraints are dealt with implicitly using an
approach modeled on trust region methods for unconstrained problems. Moreover,
the double-trust region method motivates our allowance for possible trust region size
reduction in the more practical model algorithm which is presented next, even when
f(x) is well represented by its quadratic approximation, i.e., pk > .

2.2. A practical trust region method. In the last section, we proposed a
double-trust region method for bound-constrained problems (1.1) by solving an ellip-
soidal trust region subproblem (2.10). In this algorithm, a sufﬁc1ent decrease of the
quadratic model is achieved by monitoring the ratios pf and pk and adjusting the
trust region size accordingly. Since pf, is determined by Yr(sk), an exact solution to
the subproblem (2.10) is assumed in order for p§ to be reliable. However, for large
problems, the assumption that sx be in the direction of the exact solution of the trust
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region problem (2.10) is impractical. ‘Moreover, the convergence of the method is es-
tablished under the assumption that problem (1.1) is nondegenerate. In this section,
we suggest a more efficient and practical model algorithm.

As we will see, a sufficient reduction of the quadratic model within the feasible
trust region is not difficult to achieve; for example, moving along the scaled gradient
—D;zgk guarantees this. If we assume the availability of a step which sufficiently
decreases the quadratic function within the feasible trust region, the trust region size
is needed only to force the condition p{ > p in the next iteration.

Algorithm 2. A more practical model
Let 0 < p <7 <1 and zg € int(F).
For k=0,1,...
1. Compute f(zx), gk, Bk, and Ck; define the quadratic model ¥ (s) = gT s+
%ST(Bk +.Ck)s.
2. Compute sk, based on (2.10), such that zx + si € int(F).
3. Compute

f(@k + sk) — f(@x) + 35% Crs
Pr(sk) '

ol =

4. If p;: > p then set x4 = zx + sx. Otherwise set x4 = zk.
5. Update the scaling matrix Dy and Ay as specified.

Updating trust region size A
Let 0 <y <1< 2 and A; > 0 be given.
1. If p',: < p then set Agtg € {0, 114k
2. If pi € (p,m) then set Agy; € [110k, Dk
3. If p{ > 7 then
if Ax > A; then
set Ag41 € either [y1Ak, Ak or [Ak, 72Ax];-
otherwise,
set Ag41 € {Dk, 720k).

F1G. 2.2. Trust region method for minimization subject to bounds.

In Figure 2.2, we describe a trust region method for bound-constrained problems
in which the trust region size is primarily updated according to pi. However, moti-
vated by the double-trust region method in Figure 2.1, we allow more freedom than
usual in the adjustment of A, to permit further reduction in Ay even when p;: >n,
thus encouraging the use of the trust region step (2.10).

To satisfy the first-order necessary conditions, given two positive constants 3 and
Bo, it is required that the approximate trust region solution s satisfy

Vr(sk) < BYL[-D5 gkl
(AS4) | Disk|| < ﬂokAk, ;k + sk € int{F).

In other words, we require that 1x(sx) be less than a fraction of the minimum of
i (s) along the scaled gradient —Dj 2g; within the feasible trust region. We point
out that condition (AS.4) is satisfied for every successful iteration of Algorithm 1. For
Algorithm 2, an iteration is successful if the condition p}: > p holds. Otherwise, an
iteration is unsuccessful.
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Condition (AS.4) can be easily satisfied for 0 < 8 < 1. Let di be the solution to
min{yi(s) : Dis = —vgk, ||Disll < Ak, zk +s€ F}. Then s, = dy. satisfies (AS.4),
except for the possible violation of zj + sk € int(F). Assume that zjx + di & int{F).
Since ¥ (s) is continuous, a small step-back sk = 0rdy, where 0; < 6 < 1, can ensure
both the condition zx + si € int(F) and ¥i(sk) < BY— D5 % gk)-

Assumption (AS.4) will not necessarily guarantee a solution at which the second-
order necessary conditions are satisfied. To achieve this we make the following stronger
assumptions on the quadratic model and the approximate 'solution:

(AS.5) be(s) = gTs + %sT'(sz,‘(zk) +Co)s, e, B = V2f(zk).

(AS.6) Assume that p; is a solution to minsegn {¥i{s) : ||Dis|| < Ax} and
9 and (¢ are two positive constants. Then si satisfies Yi(sk) <
Bk, || Drskll < BEAk, xk + sk € int(F).

Since both conditions (AS.4) and (AS.6) can be satisfied by simply solving a
quadratic trust region subproblem minsegn {1k (s) : ||Dxsl| < Ak}, it is not necessary
to solve a quadratic programming subproblem to achieve convergence. For example,
one can first compute a solution pi to the unconstrained trust region problem

slg;t}};{dfk(S) : | Dxs|l < Ak}

and then choose s so that zx + sk € int(F) and ¥x(sk) is the minimum of the val-
ues ¥;|px] and ¥1[—Dx 2gx]. However, requirements (AS.4) and (AS.6) are not very
restrictive. There are many ways of computing such approximations. As another ex-
ample, one can consider the reflection techniques used in {7]. It is also possible to have
a subspace adaptation of this trust region approach in which low-dimension subspace
trust region problems are solved. We leave the investigation of these computational
issues to a subsequent paper.

Before we study the convergence properties of the two trust region methods pro-
posed, we make the following important observation. If we assume that | = —oco0 and
u = +00, then Cx = 0 and Dy, = I and the quadratic model is the same as that for
unconstrained problems. Moreover, the conditions (AS.4) and (AS.6) are the same as
the conditions required for unconstrained trust region methods (e.g., {17]) since the
feasibility constraints are always satisfied.

3. Convergence properties. The convergence proofs for the double-trust re-
gion algorithm in Figure 2.1 and the practical algorithm in Figure 2.2 follow the same
main steps. Lemmas 3.2 and 3.3 make it possible to present the proofs for both al-
gorithms simultaneously in a clean fashion. The major results are Theorems 3.4, 3.5,
3.10, and 3.11.

The main difference between the practical method and the double-trust region
method is that the condition (AS.4) is assumed by the first but satisfied for the latter
by adjustment of the trust region size by monitoring the ratio p5. However, a common
property of the two methods is that, for any successful iteration, (AS.4) is satisfied.
Moreover, condition {AS.6) is always satisfied for the double-trust region method.

The convergence results of the two methods are similar. However, the assumptions
required by the double-trust region method are stronger—for Algorithm 1 we assume
that problem (1.1) is nondegenerate. This nondegeneracy assumption is not needed
for Algorithm 2.

The following result is required to express (AS.4) in a manageable form. It is
similar to Lemma (4.8) in {17].
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LEMMA 3.1. Assume that (AS.1)-(AS.3) are satisfied. If sy satisfies (AS.4) then

— Lo o)A Hgell gkl
VYr(sk) > 2ﬁl~!gkhmm{Ak, HMk”’————”gk“oo} )

Proof. Define ¢(1) : R — R by setting dy = —D;lﬁ%:—” and

¢(1) & yr(rdy).

Let 75 be the minimizer of ¢ on [0, min{Ag, ax}], where oy is the stepsize along dj
to the boundary as defined in (2.11):

L= To: Ui — Tos
Ozk.—.min{max{1 Thi k’}:lgiSn}.
dr; di;

Since ax > 0 (recall that zj € int(F)) and the components of dy have the same sign
as that of —g, it is easy to verify that

_ vk ;1 _ |vie; || 9 for some j.
Idicjl  lvkjllgr;l
Hence
o > lgxll
| llgxlloo
By the definition of ¢(7),
. 1 def 9% Mg
A1) = =7lgll + 5720k, pe = E2
) 9| 5 H TEAE

If 77 € [0, min{A, ax}), then ps > 0 (thus §7 Migx > 0) and 77 = 18l Thyus
k k k Mk

1 1 g2
¢(me) = —5 < oot
) == 2 || M2

Assume 77 = Ag. Since urAx < ||gx|| when px > 0, and ¢(77) < —Agl|gx|| otherwise,
we have

B = H(Ak) < 3 Axllael.

Assume 7; = ak. Since pray < ||gk|| when px > 0, and ¢(7) < —ox||gk|| otherwise,
we have
1l

2 ”gk”oo

Since Yr(sx) < Bo(1i) by (AS.4), the result follows from the two previous
estimates. 0

1
$ri) = $lon) < — 5 llnl <
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Assume that the kth iteration is successful from either Algorithm 1 or Algorithm
2. From Lemma 3.1,

f(zx) = f@r+1) — %sfcksk > —pthr(sk)

> 2 Bullgn]| min {Ak,”ik”— el }

|

1M ]| Nlgrlloo

Hence, under assumptions (AS.1), (AS.2), (AS.3), and (AS.4),

F@e) = Flans) > 5oE Cusn-+ Soulanlmin { &y, 1061, 10l

Note that s7 Cxsk > 0. The reduction in f is guaranteed to be better than a multiple
of the reduction achieved in the (negative) scaled gradient direction, i.e.,

(3.1) $lan) = Forrn) > ol min { g, 121, 2L}
XM Xg
This inequality is important for the convergence proof.
Next, in Theorems 3.4 and 3.5, we prove that the first-order necessary conditions
are satisfied at every limit point of {zx}. Several technical results are required first.
Recall that pk is a global solution to the trust region subproblem (2.10). Using

Theorem (3.11) in [17], there exists a parameter A\x and an upper triangular matrix
Ry € R™*™ such that

(3.2) Mk + M = R{Rk, (Mk + )\kI)kak = -0k, A 20,
with Ax(Ax — | Dkpkll) = 0. Equivalently, pi is the solution to
(3-3) (Al + D *Ck D )pi = — D 2(gx + Bxp)-

LEMMA 3.2. Suppose that {z)} is a sequence generated by Algorithm 1. As-
sume that problem (1.1) is nondegenerate; (AS.1), (AS.2), and (AS.3) hold; and {zi}
converges. If {Ax} converges to zero and liminfx.cc [|gk|l > O, then pf > 1 for
sufficiently large k.

Proof. Since {Ax} converges to zero and || Dipi|l < Ay, it follows that {Dipx}
converges to zero. But ||pk|| < xpl|Dxprll. Hence {px} converges to zero. Using
(AS.2), {Bipi} converges to zero. From (2.8), D;'CxD; ' = diag(gx)Jy is positive
semidefinite and bounded. Together with the assumption lim infx_c {|gx|| > 0 and
(3.3), it is clear that {\.} converges to +oo.

Assume that ay is the stepsize to the boundary of the constraints along pix. From

(2.11),
L — Zr: Ui — Tis
ak=min{ma.x{’ xk,’uz zk’}:lgiSn}.
Dk; Dki

Consider a limit point of {zx}. Since {px} converges to zero and the problem (1.1) is
nondegenerate, it is clear that

lj — Tk; uj— Tk;
lim ma.x{ R R kj}:-}-oo Vj with g.; = 0.
k—oco0 Pk Dk
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Assume now that g.; # 0. Since {Bipi} converges to zero and using (3.3), for k
sufficiently large, —gi; and px; have the same sign. Hence, if

lj — xk; uj —a:kj}
?

Qi = max { ,
Pk; Pk

for some j with g.; # 0, ax = :%f-?—: -Using o = :—:;’;‘%, (3.3), the boundedness of
J J

{(gx + Bkpxk)}, and {Ax} converging to +oo, we conclude that limy_, . ax = +00.
Subsequently, sy = aj[pk] = px. Thus, for k sufficiently large,
min{Yk(s) : s = Tk, | Disl| < Ax, Tx+s € F} = min{vh(s) : s = 7px, || Dis|| < Ax}.
Hence
Yi(pe) = min{yr(s) : s = Tpx, |Disl| < Ak, zx +s € F} < 9i[-Di gkl
and therefore

Yi(sk) _ _ (k) _
Yil-Di%0k]  vi[—Di2g] ~

Pk = g

LEMMA 3.3. Assume that {A} is updated by Algorithm 2. If p£ > n for suffi-
ciently large k, then {Ax} is bounded away from zero.

Proof. By assumption, there exists k such that when k > %, pi > n. We prove,
by induction, that for k > k,

(3.4) Ap > nﬁn-{lez,A,;}.

First, it is clear that (3.4) is true when k = k.

Assume that (3.4) is true for k > k, ie., Ax > min{y1A;,Af}. If Ax < Ay,
Agt1 2 Ag 2 min{m Ay, Ag}. I Ag > Ay, Agyr 2 min{miA;, Az}

Hence (3.4) is true for all kK > k and {A} is bounded away from zero. a

The proof of the following theorem is a slight modification of Theorem (4.10) in
[17].

THEOREM 3.4. Assume that f : R™ — R is continuously differentiable on F and
(AS.1), (AS.2), and (AS.3) hold. For Algorithm 2, if {si} satisfies (AS.4), then

(3.5) lim inf [|§&]| = O.
k—o0

For Algorithm 1, (3.5) is true under the further assumption that problem (1.1) is
nondegenerate.

Proof. We must show that {||gx||} is not bounded away from zero. Assume that
there is an € > 0 such that ||gi|| > € for all sufficiently large k. We now show that

(3.6) f:‘Ak < +o00.

k=1

If there are a finite number of successful iterations, then Ay ; < 1,Ax for all &

sufficiently large and then {3.6) clearly holds. Assume now that there is an infinite
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sequence {k;} of successful iterations. Since {f(zx)} is nonincreasing and bounded
below,

o
0< Y (fl=zx) — fl@r+1)) < +o0.
k=0
This last inequality, (3.1), and ||gk|| > € imply that

o0
Z Ak,- < +4-00.

=1

Similar to the updating rule in Figure 1.1 for unconstrained trust region methods, the
updating rules of Algorithms 1 and 2 specify that Ag+1 < 71k for an unsuccessful
iteration and Axy1 < 724 for a successful iteration. It is easy to verify that the
following holds:

[o ] oo
Y2
&Ak < (1+ H) ;Akn

and thus (3.6) holds in this case as well.
Next we prove that (3.6) implies that {| p{ — 1|} converges to zero. First,

Nzr+1 — zxll < llskll £ xpBolk,

and hence (3.6) shows that {z;} converges. Now (AS.1) and (AS.2) imply that

1 1
Vi(sk) — gE sk — =55 Cksk| = | =5t Brsk
2

2

1
< 5xBXpl|1Deskll®.

But ||Diskll < BoAx. Therefore, using f(zx + sk) — f(zx) = G sk, where g &
Vf(zx + Exsk) with 0 < & < 1, we have

f(zk + sx) — flze) + %S{Cksk — Yilsk)

<

1 _
Yi(sk) — gF sk — 5% Crs| + {Gx — gx) skl

1 _
< xBBxDAL + xpPoAklgr — Fll-

This inequality, the continuity of g(z), and the fact that {zi} converges indicate that
there exists a sequence {ex} converging to zero such that

S EkAk.

flzi + sk) — flzk) + %Sfcksk — Pr(sk)

Since Lemma 3.1 implies that

1
—Yrlsk) > §5€Ak,
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we readily obtain that {| p,{ — 1|} converges to zero.

Using Lemma 3.3, {Ax} cannot converge to zero in Algorithm 2. This-contradicts
(3.6) and establishes the result.

For Algorithm 1, using Lemma 3.2, A, is not decreased for sufficiently large k.
Thus {Ax} cannot converge to zero, contradicting (3.6). The result follows. O

The next theorem establishes that {D; 'gx} converges to zero. This result is
obtained despite the fact that { Dy} is not uniformly bounded. This may be somewhat
surprising since the analogous convergence result in the unconstrained setting requires
the sequence of diagonal scaling matrices to be uniformly bounded. The proof of this
theorem is similar to that of Theorem (4.14) in Moré [17].

THEOREM 3.5. Assume (AS.1) and (AS.2) hold and g(z) is continuous on F. If
{zx} is generated by Algorithm 2 and (AS.4) holds for sy, then

(3.7) Jim ||D; il = 0.

Result (3.7) also holds for Algorithm 1 when problem (1.1) is nondegenerate.

Proof. The proof is by contradiction and is the same for Algorithms 1 and 2. (The
nondegeneracy assumption is needed for Algorithm 1 because the proof uses Theorem
3.4.)

Let €; in (0,1) be given and assume that there is a sequence {m;} such that
|gm; || = €1. Theorem 3.4 guarantees that for any €5 in (0, €1) there is a subsequence
of {m;} (without loss of generality we assume that it is the full sequence) and a
sequence {l;} such that

(3.8) gkl > e2, mi <k<li, o] < e
If the kth iteration is successful, then according to (3.1),

1
f(zx) = f(Tr+1) > '2'5u€2min {Ak, <2 6—2} , mi<k<l.
XM Xg
Since f(z) is bounded below on £ and the sequence {f(zx)} is nonincreasing, {f{(z)}
converges and {f(zx) — f(zx+1)} converges to zero. From ||zx4+1 — zi|| < BoxpAk, it
follows that, for sufficiently large 1,

(3.9) f(zk) = fzrs1) 2 esllziss — zill, m:i <k <l
where €3 = (%Buez) /(Boxp)- Using (3.9) and the triangle inequality,
f(xmi) - f(zki) 2 63”xki - xmi”? m; < k; < U;.

The uniform continuity of g(z) (since £ is compact) and the convergence of {f(zx)}
can now be used to deduce that

(310) “gm1 - gli” <eé

for 7 sufficiently large.

Consider a subsequence of I; (without loss of generality assume that it is the full
sequence) such that {z;, } converges to z,. Then {z,} converges to z,. Based on the
definition of v(z), if the jth component of g, is nonzero, then, for i sufficiently large,
the corresponding component of ||vy,, | — |vy|| is no greater than that of |zm, — zy,|.
Thus {diag(|vm,|? — |vi;|?)gi,} converges to zero. Therefore, for ¢ sufficiently large,

(3.11) (D7 = Dy M)g || = | diag(vm, ] — fvr,})gn ]| < eo.



AN INTERIOR TRUST REGION METHOD 433

Using the triangle inequality for any m and [,
(3.12) lgmll < 1D Mgm — gull + 1D = D Haill + Hlaill-
Combining (3.12) with (3.8), {3.10), and {3.11), we obtain that
e1 < (xp + 2)e2.

Since €, can be any number in (0,¢€;), this is a contradiction. O

Next we consider the second-order necessary conditions. As mentioned in (AS.5)
of §2.2, we assume the following quadratic model: U(s) = gF s+3sT (V% (z)+Ck)s.
Moreover, in addition to (AS.4), the condition {(AS.6) holds, i.e., the reduction of the
quadratic model satisfies

’l,/)k(sk) < B9 min{z/)k(s) 18 = TpDk, HDksll <Ak, T+ S € .7"},
||Dksk|| < ﬂgAk, T + Sk € int(f),

where pi. is a global solution to the unconstrained subproblem

min {9(s) : |1 Dksll < Ak}-

Before we state the second-order convergence result, several technical lemmas are
required. First, we quote Lemma (4.10) in {18].

LEMMA 3.6. Let z. be an isolated limit point of a sequence {zx} in R". If {zx}
does not converge, then there is a subsequence Zi; which converges to z. and an € >0
such that

o1 — 71,11 2 €.

Now we examine the consequences of (AS.6) in greater detail. Recall (3.2): there
exists a parameter Ax such that

(M + M) = RERy, (Mi + MI)Dipr = —3k> A 20
with Ac(Ax — || Dkpill) = 0. Furthermore, as mentioned before, pi satisfies
(I + D72Cr)pk = —Dj *(gk + Brpr),

which is equation (3.3). These equations will be used repeatedly in the subsequent
proofs.

LEMMA 3.7. Assume that (AS.6) is satisfied. Then
34
—Pr(sk) = Bilpk] 2 %‘{min{l,ai}/\kAi + min{1, o H| Re Dipx %],

where oy is the stepsize along pi to the boundary and px is a global solution to the
trust region subproblem (2.10).

Proof. Let ¢(7) qef Ve(rpx) and 7 € {0, min{1, ax }], where aj is the stepsize along
px to the boundary.
It is easy to see that

1
&(T) = TGt Pk + 57 2pT Micpx .
. 1 ~
= 7% Dipr + 57 %(Dxpi)T My Dicpr
. 1 ,. 1
= 9% Dipr — 57 0" DiPk — ST Dipi|? (from (3.2))

1 1
= —7||ReDip|l® + §TzliRkapk|l2 - §T2AkAi {from (3.2)).
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But 72 < 7 since 7 < 1. Let 77 be the minimizer of #(7) in {0,min{1, ax}]. Then
7% = min{1, ax } since py solves the trust region subproblem (2.10). From (AS.6),

—Yr(sk) = —B¢(73) > %[min{l,ai}/\kﬁi + min{1, ok }|| R Dicpic||?]- 0

The following lemma provides estimates of the reductions in the ob jective function
and the quadratic model. We emphasize that the results hold for any subsequence
generated by the algorithms. (Consequently, they hold for the entire sequence as
well.)

LEMMA 3.8. Assume that the conditions of Theorem 3.5 and (AS.6) hold. Fur-
thermore, {Ti} is any subsequence generated by either Algorithm 1 or Algorithm 2. If
every limit point of {zx} is nondegenerate, then there exists 0 < g < 1 such that, for
k sufficiently large,

B8 { A2e2 A2 } 2
— Sx) =2 — min 1, ’ A ’
VYi(sk) 2 5 [(xs + AkxBxD)XD]? (xg + DrxBXD)2 f " F

and if the kth iteration is successful, then

f(zk) = f(@r41) > ﬁumin {1, Ao 272’ X 2 } AeAZ.
2 [(xo + DrxBXD)XP)?’ (X + AkXBXD)

Proof. Using Lemma 3.7,
A 2 2
(3.13) — Yr(sk) = 0} min{1, a; }AeAy,
where ay is the stepsize along pj to the boundary as defined in (2.11):

. . L — ;i — T ,
(3.14) ak=mm{ma.x{ d xk’,ul xk’} : lngn}.
Pk; DPk;

Since the problem is nondegenerate at every limit point and {z«} is bounded, there
exists 0 < g < 1 and 2¢g < min(u — [), such that, for sufficiently large %,

(3.15) min(zr — l,u — zx) + |gk| > 2¢0e, e= »{1, LT ewn

(Otherwise, there would be a degenerate limit point of {xx}.)
Following Theorem 3.5, {D,:1 gk} converges to zero. Hence, for sufficiently large

k,
(3.16) 1D %9k lo0 < €2.
Assume that k is sufficiently large and
(3.17) Qo) = max { 4 ;I:kj , e p—k;rkj } for some j.
Recall that
(3.18) diag(gk)Jx =0

and J{ is a diagonal matrix.
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If |gk;| < €o, using (3.15), we have
min{zk; — lj,u; — Tk;} > €o.
Hence, from (3.3), (3.17), (3.18), and
g + Bipilleo < Xg + x5 D5 I Dxpll < xg + XBXDDE,

we obtain

o > Ak€o
k2> )
(xg + DkXBXD)XD

If |gk;| > €o, then |vg;| < €o because of (3.16). If ax = {I:T:i%’ then from {3.17),
J

(3.3), and (3.18), and noting that |vk;| in the numerator is cancelled with D;CJTJ.2 in
the denominator, ,

Ak
oy > ———————.
Xg + DrXBXD

Assume that ax # :%:-;—ll Since |vk;| < €0, uj—1j > 2€0, and a # {%’;i—:, the magnitude

of the numerator determining oy is greater than €. Hence, using (3.3), (3.17), and
(3.18),

o > Ak€o
k Z .
(xg + DkXBXD)XD

Using (3.13), we have

—Yr(sk) = ﬁmin{l Aked X })\ A2
RER =g "[(xg + ArxBXD)X5)? (Xg + DrXxBXD)? Kok

If the kth iteration is successful, p,{ > u. Hence

flzk) = f(@r+1) = —poe(sk) + %sfcksk

> —pr(sk) (since sf Cxsk > 0)
A { Aied AR } 2
> —pming 1, , PYPAE
2 H (e + Drxax0)Xol? (xo + BkxBxD)?2J " *
The proof is completed. O
When Mj is positive definite, we denote the Newton step for (2.10) by
(3.19) SN DN, e, MiDish = gk

LEMMA 3.9. Assume (AS.1), (AS.4), (AS.5), and (AS.6) hold and f(z) is twice
continuously differentiable on L. If the sequence of trust region subproblem {2.10)
solutions {px} converges to zero, {zx} converges to Z., and M, is positive definite,
then

>1, likminfM > 1.

—oo Pr{pk)

..o YUrloxlpk])
Ilf AN AT AT VA
B ot o]
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Moreover, for sufficiently large %,
ilpell > emin{AZ, | Dus |7}

for some constant € > 0.
Proof. Let aj be the stepsize along px to the boundary as defined in {2.11):

. li —zk; ui— x4
ak=mm{ma.x{’ ki 5T Ok :1<i<n}.
Pk Pk;

Since py is a solution to (2.10), 7; = min{1, o4} in (2.12). By condition {2.13) on
Ok, 61 < 6 < 1,0 — 1 = O(||pk|)- Since M is positive definite for sufficiently large
k, we have that pI Mip, > 0. In addition, Yi[pk] < 0. Therefore

o U(op[pe]) L. . TROkglpr + 177260207 Mypy
lim inf ———-—* = lim inf - T
k—oo ¢k[pk] k—oo Te9%x Pk + 57 "D Mipi

. Tebkgl ke + 17220k pT Mypy
2 lim inf =——= 1. +2.7T

k—oo 7Lk Pk + 37% Py Mipk
> lim 6,

k—oo ,

=1.

(using 63 < 6x and Y}[px] < 0)

The last equality limg—,oc 6 = 1 comes from lim—_,, px = 0 {by assumption).
Since M, is positive definite, z, is nondegenerate. If all variables are free at the
limit point z., then from the assumption that {px} converges to zero it is clear that

likminf ar = +00.
Assume now that there exist variables on the boundary at z,. Recall {3.3):
(I + D 2Cr)pr = —Di%(gk + Bipx).

Since {Bxpx} converges to zero (note that By = V2f; under the assumption (AS.5)),
el + D;zc'k is a positive semidefinite diagonal matrix, and z, is nondegenerate with
D 'g. = 0 (because of Theorem 3.5), for any i with v,; = 0, Pk; and gi,; have the
same sign for k sufficiently large. Hence, if o4 is defined by some v, j=0andg.; #0,

then oy = T';—:J:—: for sufficiently large k. Using {3.3) again,
7

9] + Ak
Qp = .
|9k ; + (Bxpr) ;]
This means that ’
(3.20) liminf ap > 1.
k—oo

Using Lemma 3.7, we have

—i[px] > %min{l,ak}HRkapk”z-

Assume that €g > 0 is a lower bound on the eigenvalues of M,. From {3.2), we have

Il R Dicprell® > €oll Dipk||? + Al Dapieli®-
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But || Dipill < Ak and, for sufficiently large k, pr = sl if | Dipxll < Ax. Hence
. 1 . .
[¥lpa]l 2 Ze0 min{1, ax } min{A, | Ds 11},

where Dysl = — Y k. Let0<e< 3€0- Then, using (3.20), for k sufficiently large,

[pilpell > emin{AL, [|Dxst 17}

In addition, from 732 < 77 (since 0 < 77 = min{ax,1} < 1), pf Mipe > 0 for
sufficiently large k, and ¥;(px) < 0, we have

* T 1.2, T
k 7 + i pI M,
lim inf M = lim inf kngpk 21 kTpk kPk
koo Pr(pk) k—oo gy Pk + 5Pk MiPk
> lim inf min{ox, 1}
k—oo

=1.

Hence

Vi Pk]

th{l-'lgf Yi{pr) 21

The next theorem indicates that the first-order and second-order necessary con-
ditions can be satisfied.

THEOREM 3.10. Assume (AS.1) holds and f : F — R is twice continuously
differentiable on F. Let {zy} be the sequence generated by Algorithm 2 under as-
sumption (AS.5) on the model ¥y and under assumptions (AS.4) and (AS.6) on the
step sk. Then

(i) the sequence {gx} converges to zero;

(ii) if every limit point is nondegenerate, then there is a limit point z. with M,
positive semidefinite; A

(iii) if z« is an isolated nondegenerate limit point, then M, is positive semidefi-
nite;

(iv) if M, is nonsingular for some limit point T. of {zx}, then M, is positive
definite, {zx} converges to z., all iterations are eventually successful, and {Ax} is
bounded away from zero.

Under the additional assumption that problem (1.1) is nondegenerate, equivalent
results hold for the sequence generated by Algorithm 1.

Proof. We prove each result in order.
(i) The sequence {gx = D;lgk} converges to zero—this was proved in Theorem
3.5. '

(ii) First we consider the case when liminfx—oo Ac = 0. Let Apin(Mg) denote
the minimum eigenvalue of M. Since Ax > max(—Amin(Mk),0), it is clear that,
when lim infx—oco Ax = 0, there must exist a limit point z. at which M, is positive
semidefinite.

Next we prove by contradiction that lim infx—oo Ak = 0. Assume that Ay > €>0
for all k sufficiently large. First we show that {Ax} converges to zero.

From Lemma 3.8, we have that, for sufficiently large k,

9
—i(sk) = é,)—éké-’-\i,
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where

g def o {1 €2e? €2 }
k = ) . .
{xg + ArxDxB)X5]?" (xg + DArkxBXD)?

Moreover, for sufficiently large k and successful iterations,

(3.21) flzk) = f@nn) > 3B%ueet}.

The remaining arguments are similar to the proof of Theorem 3.4. If there is a finite
number of successful iterations, {A;} converges to zero. Otherwise, let {k;} be the
infinite sequence of successful iterations. The definition of &, inequality (3.21), and
the convergence of { f(zx) — f(zk+1)} to zero imply that there exists a constant €; >0
such that €, > €;. This fact and inequality {3.21) imply that

oo
ZAii < 00.

i=1

Similar to the updating rule in Figure 1.1 for unconstrained trust region methods, the
updating rules of Algorithms 1 and 2 specify that A3 < 714 for an unsuceessful
iteration and Ax4; < 724k for a successful iteration. It is easy to verify that the
following holds:

oo 72 o
>az<(1+72) AL

k=1 =1

~

Hence {Ax} converges to zero. Since ||sk|| = || Dy 'Dgsik|l < xpBlAk and |lpk| <
XDAk, we conclude that both {sx} and {pi} converge to zero.
From the fact that {Ax} converges to zero,

é€x > €  for some € > 0.

Hence,

q
-—d}k(sk) Z %éeAi.

Now a standard estimate is that
1
_!f(ivk + sk) — f(zx) + §S£Ck3k — Urlsk)|

<llsel® gmax V%@ +€s0) = V()]

and thus the last two inequalities and the fact that {sx} converges to zero (thus
{IIV2f(zx + £sk) — V*f(zx)||} converges to zero) show that {|p] — 1{} converges to
zero.

We conclude that the entire sequence { p{} converges to unity.

For Algorithm 2, using Lemma 3.3, {Af} cannot converge to zero, which is a
contradiction.

Now we consider Algorithm 1. Let ai be the stepsize to the boundary along p.
According to the definition {2.11),

ak=min«{ma.x{li—xki,ui_$ki}: 151’571}.
Pk; Pk;
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If all variables are free at a limit point z,, then it is clear that lim infx— o0 = 4+00.
Otherwise, consider a limit point z, with some variables at their bounds. Since this
limit point is nondegenerate, limg— D;Q gk = 0, and pj converges to zero, —gi; and
Pk have the same sign for any g.; # 0. Using (3.3), we have

=1Ukj|___ lgk ;| + M
Ipk;| — lgk; + (Brpk)il

Qg

for sufficiently large k with g,; # 0. But Ax > €. Thus the corresponding limit of ax
is greater than 1. Hence

liminf ax > 1.
k—oo

In other words, sy = of[px] = px for sufficiently large k. Therefore p§ > 1 for
sufficiently large k. Hence, {A} cannot converge to zero, which is a contradiction.
In conclusion, there is a limit point with M, positive semidefinite.
(iii) If {zx} converges to z., the result follows from (ii). If {zx} does not converge
then Lemma 3.6 applies. Thus, if {z;,} is the subsequence guaranteed by Lemma 3.6,
then A 2> ;(—;—ﬁge and the l;th iteration is successful. From Lemma 3.8 {note that

Lemma 3.8 holds for any subsequence),

F(@,) ~ (1) > Spmin 1 ah a M, A2
xz1.) — f(zi, > —pumins 1, , AT
l; 1;+1 9 1% {(Xg +A15XBXD)X2D]2 (Xg + AleBXD)2 ;5

From 4, 2 x_n'lF’e’ it is straightforward to verify that there exist positive constants
0
€1, €2, €3 such that

349
flzy) — flxy;+1) > %unﬁn{el)\lj,egz\‘?j,e;;}\?j}.
Since {f(zx)} is monotonically nonincreasing and bounded below, {f(zx) — flzr+1)}
converges to zero. Hence {);;} converges to zero. Thus M, is positive semidefinite.
(iv) If M. is nonsingular at a limit point z. of {zx}, then z, is an isolated

limit point and hence M, is positive definite following (iii). Since ¥x{sk) = g¥ sk +
%s',l:Mksk < 0, we have that

GF Disi < —-;—{Dksk)TMkask <0
whenever Mj, is positive definite. Hence
2 (Drsi)" MkDisi <1 Desilonll
But (Dksk)TMkask > le.,—"|1Dksk||2. Therefore
skl < 197 g
whenever M;, is positive definite. This means that

Hlsell < xollDesell < xoll it el
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whenever Mj, is positive definite. But {D,:1 gk} converges to zero. Following Lemma
3.6, {zx} converges. Since limk—,c §x = 0, {zx} converges to z., and M, is positive
definite, {px} and {sx} converge to zero.

Next we prove that the iterations are eventually successful and {A;} is bounded
away from zero. Using Lemma 3.9, there exists € > 0 such that, for sufficiently large
k,

(3.22) [¥xlpx]l > emin{AZ, | Disy’||?}.

But recall that whenever Mj, is positive definite
1 ' -~ _1 ~
SIDsell < 138 el

Let x be an upper bound on the condition number of M. From Ok = —MkasiV
based on (3.19),

1 ;
§”Dk3k” < k|| Dest |-
Hence, using (3.22) and (AS.6), there exists € > 0 such that
€
—¥k(sk) > €| Disell® > —|sk]|%
XD
This estimate and

flzx + sk) — flzw) + %S{Cksk — Pr(sk)

<lsell® gmax, V21 i +€s1) ~ V2 (z)|

yield that p{ > 7 for k sufficiently large since {sx } converges to zero. (Thus {||V3f(z;+
€sk) — V3f(zx)||} converges to zero.)

For Algorithm 2, using Lemma 3.3, we immediately conclude that {Ak} is bounded
away from zero.

Now we consider Algorithm 1. Since py is a solution of the trust region subprob-
lem, it is clear that

Yr(pe) < min{¥u(7D;*gr) : IrDi 'gxll < Ak} < ¥[-Di%gi] < 0.
Using Lemma 3.9, for k sufficiently large,

Yelpe) | Yilpe] | Y(oglpe])
Yi[-Di2ge] ~ Yr(pk) Vi {px]

Pk = >

Therefore all the iterations are eventually successful. According to the trust re-
gion size updating rules, {Ax} is bounded away from zero. The results are estab-
lished. a

The next result establishes quadratic convergence of the sequence generated by
Algorithm 2, provided the truncated Newton step is chosen when it is admissible.
(Note that Theorem 13 in {7] establishes that ultimately the truncated Newton step
will always be admissible.)
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THEOREM 3.11. Assume the conditions of Theorem 3.10 hold, 0 < f# <1, and
M, is nonsingular for some limit point . of {zx}. Let s be the Newton step (3.19)
when it ezists. Further, assume sy = ol[sy| whenever |DisY |l < Ak and atlsy)
satisfies (AS.4). Then {xx} converges to . quadratically.

Proof. From Theorem 3.10, {Ax} is bounded away from zero. But under our
assumptions, {Df gk} converges to zero and {zi} converge to Z.. Hence {Djsd }
converges to zero where sp is the Newton step:

Mkasiv = —gk.

Next we prove that si = aj[sy] for sufficiently large k. It suffices to prove that,
for sufficiently large k, || Drat[sN]ll < Ax and o}[sy] satisfies (AS.4). Since {DxsY}
converges to zero, | Dxog{st]|| < Ay for sufficiently large k. Using definition (2.14),
for sufficiently large k,

N N N * N N N
ailsk ] — sk = ThOkSk — Tk Sk + TRSk — Sk >

where 7; = min{1, ax}. From Lemma 11 in 7, |7t 1] = O(llzk —z. ). But{6x—1| =
O(||s¥|])- Since 0 < 8 <1 by assumption, for sufficiently large k, 8 < 0x7; < 1 and
loz(sN] - s¥ || = O(llzx — 2.||?). This implies that 0 < 9272% < @x7y. Using (2.14),
for k sufficiently large,

. . 1 yT . -
nealel) < ourg (oFsl + 5o Mel) < BURI-D 0l
ie., ai[s)] satisfies (AS.4) for sufficiently large k. Hence, under the assumptions,
sk = ai[sl] for k sufficiently large. In addition, following (iv) in Theorem 3.10,
a;[sl] yields a successful iteration for sufficiently large k, i.e.,

$ 1 NT
o+ oflsl) - 1Gaw) < (aFof + ot Ml ).

Using Theorem 13 in [7], {zx} converges quadratically to .. 0

4. Preliminary numerical experiments. In this section we report on prelim-
inary experiments with the practical trust region method, Algorithm 2, on a set of
standard test problems of low dimension. The method solves these problems quite
satisfactorily, indicating that this approach has practical potential.

We implemented the “practical trust region algorithm” described in Figure 2.2
in a straightforward manner. Either sk = o] Pk}, where pj is a solution to the trust
region subproblem (2.10) or s = o[- Dy %gx]. The exact implementation is described
in Figure 4.1.

The computed step s satisfies the conditions

Pr(sk) < ﬁwk(a;{—Dgzgk]), | Diskll < Dk, T + Sk € int(F)
and
D(sk) < Yr(anlpxl), IDkskll < Ak, Tk + sk € int(F).
Note that it is easy to verify that condition {AS.4) can be replaced with

ilsk) < Bvr(at[—Di2gk]), IDrsill < BoAk, Tk + sk € int(F)
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The method implemented
Let o = 0.25,8 = 0.1, = 0.75, 70 = 0.0625,7; = 0.5,72 = 2, A; = 1, and
zo € int(F)
For k=0,1,...
1. Compute f(zk), gk, V?f(zk), and Ck; define the quadratic model ¥ (sx) =
9k sk + 35T (V3f (k) + Ck)sk.
2. Compute a solution pj of (2.10). Compute

A CHE))
¥ (ag[—Di*gk))

Pk =
If p§ > B, sk = aj[pk]. Otherwise, sy = af[~Dj %gx].
3. Compute

f(xx + k) — fzx) + 557 Crse
Yr(sk) '

ol =

4. If pi > p then T34 = i + s. Otherwise zx4; = zk.
5. Update the scaling matrix Dy and A, as specified.

Updating trust region size A
1. If pi < 0 then Ag41 = YoAk.
2. If 0 < pf < p then Ayyy = max{70Ax, m || Drsill}-
3. If pf > 7 then
if p§ > n then
Ag+1 = max{Ag, 2| Drskl||}
else
if Ax > A; and p§ < p then
Ak41 = max{m Ak, || Drskl|}-
4. Otherwise, Agy1 = Ag.

F1G. 4.1. The interior and trust region method implemented.

and condition (AS.6) can be replaced with
Yr(sk) < BIk(ak[pk]), | Drskll < B§Ak, Tk + sk € int(F).

Thus, the implemented method has the convergence properties listed in Theorems
3.10 and 3.11.

The experiments were done on a Sun (Sparc) workstation using Matlab 4.0 [16].
The stopping criteria used were

Mk > 0 and '(,bk(sk) <0.5%10712,

The test problems are taken from [9]. However, the starting points as described in {9]

may not be strictly feasible. Assume that Zser¢ is the starting point specified in 19].
We modify the starting points as follows:

To; = Ui + 0.1 % (u; — I;) if ZTsrare; < 1 + 100,
To; = u; — 0.1 % (u,— - li) if Tstart; > u; — 100k,
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TABLE 4.1
Experiments with a practical trust region method for bounded constrained problems.

[ Number of Function/Gradient Evaluations |

PROB n NEW CGT
GENROSE U 8 | 45 | 38 42
GENROSE C 8 |15 | 14 15

CHAINROSE U 25 | 23 | 19 20
CHAINROSE C 25 | 28 | 23 | 18
DEGENROSE U | 25 | 30 | 30 95
DEGENROSEC | 25 | 28 | 23 17
GENSING U 20 | 27 | 27 10
GENSING C 20 | 23 | 22 4
CHAINSING U 20 | 26 | 26 18
CHAINSING C 20 [ 22 | 21 3
DEGENSINGU | 20 | 26 | 26 155
DEGENSING C 20 | 35 | 34 3
GENWOOD U 8 | 68 | 57 107
GENWOOD C 8 |10]| 9 5
CHAINWOOD U | 8 | 57 | 48 77
CHAINWOOD C | 8 | 10 | 9 5
HOSC45 U 10 | 28 | 27 19
HOSC45 C 10110 ] 9 12
BROYDEN1AU |30 |14 | 14 11
BROYDEN1IAC | 30 ] 14 | 13 8
BROYDEN1BU |30} 7 7 7 -
BROYDEN1BC | 30| 9 8 6
BROYDEN2A U [30 |19 | 16 | 14
BROYDEN2A C | 30 | 24 | 22 10
BROYDEN2BU |30 | 9 9 9
BROYDEN2BC |30 | 15 | 14 9
TOINTBROY U {30} 8 8 8
8
7
8

TOINTBROY C | 30 | 12 | 11
TRIG U 10 | 13 | 11
[TRIGC 1710 | 16 | 14
TOINTTRIGU | 10| 8 | 6 | 13
TOINTTRIGC | 10| 8 | 6 | 10
CRAGGLEVY U | 8 | 33 | 31 | 24
CRAGGLEVYC | 8 | 30 [ 29 | 20
PENALTY U 15 | 24 | 24 | 27
PENALTY C___ | 15 | 29 | 29 | 80
AUGMLAGN U | 15 | 29 | 26 | 31
AUGMLAGN C_ | 15 | 46 | 44 | 31

BROWNI U 10 | 20 | 20 | 27
BROWNI C 10 | 31 | 30 | 27
BROWN3 U 0] 9 | 9 7
BROWN3 C Ti0|10] 9] 6
BVP U 1021 | 21| 4
BVPC 10 | 20 | 20 | 4
VAR U 20 | 12 | 12| 6

VAR C 72012111 6

where € ~ 10716 is the machine precision.

In Table 4.1, we report the number of function and gradient evaluations taken
by the method to obtain the required accuracy. The number of function evaluations
required by the method in [9] is given in the last column as a relative comparison {the
exact Hessian is used to obtain these numbers). Our implemented method computes
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the trust region solutions while the method in [9] uses conjugate gradient. We point
out that the starting points and the stopping criteria of the two methods are different.
The approximate solutions obtained by the two methods may also differ.

A subspace version of this interior trust region method is currently under investi-

gation for large-scale problems. Preliminary results are very encouraging and will be
reported subsequently.

5. Conclusions. We have proposed a trust region approach to the bound-con-
strained nonlinear minimization problem. This approach generates strictly feasible
iterates and possesses strong convergence characteristics. In particular, we have estab-
lished second-order convergence properties. Moreover, the convergence results match
the implementation in the sense that a global solution to a quadratic programming
problem, with linear inequality constraints, is not required by the theory. Instead, an
approximate minimization of a quadratic function subject to an ellipsoidal constraint
is required (and achievable).

Our computational experiments on a well-known test collection of small-dimen-
sional problems indicate that Algorithm 2 has practical potential. However, from a
practical computational point of view we believe the real promise of the underlying
ideas presented here is in the large-scale setting. The method as described is not
directly suitable for large-scale problems—the computation of a (suitably) accurate
solution to the trust region problem in high dimensions is probably too costly. Nev-
ertheless, there is considerable scope for modifying and adapting the basic idea, with
efficiency in mind, to the large-scale setting. This line of research is currently under
investigation.

Finally, we remark that the trust region ideas developed in this paper for box
constraints can be extended to the case where there are also linear equality constraints
present, i.e., min{f(z) : Az = b,l < z < u}. This generalization is also the subject of
current research.
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